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Introduction

• Per JPL 30 years of experience, Modal Mass Acceleration Curve (MMAC)

approach bounds Coupled Loads Analyses (CLA) results while not being overly

conservative. However, most spacecraft industries use sine loading.

– JPL Past Projects supported by MMAC:

• Galileo (1989), SIR-C (1994), Cassini (1997), Deep Space 1 (1998), SRTM (2000),

MER (2003), MSL (2011),SMAP (2015)

– JPL On-going Projects supported by MMAC:

• M2020 (2020), Europa (2020s), NISAR (2020)

• The purpose of this study is to compare the MMAC and sine analyses results,

against CLA results.

– Per this study, sine analysis results have shown deficiencies in comparison to CLA

however, MMAC analysis results have been bounding
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Background

• Successfully implemented at JPL over the past

30 years for spacecraft launch loads for all JPL

missions.

• Innovative extension of the PMAC loads

analysis method to modal models of spacecraft

structure.

• MMAC is based on the principle that the

acceleration response of a base driven system

is inversely proportional to the square root of

mass.

• Each mode is treated as a single DOF system

fixed at Spacecraft to LV interface with some

effective mass

• MMA-Curve bounds the magnitude of the

modal accelerations as a function of effective

mass of each mode

MMAC Analysis
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Background

• MMAC Advantages

– Quick turnaround: 

• Load analysis for a payload are done in few days 

– Large output request: 

• Possible to output loads for the entire payload model 

– Launch Vehicle Models

• Launch vehicle models and forcing functions are not required

• Considerations

– Bounding Loads: 

• Provides bounding loads for the low frequency launch dynamic 

environments (<100 Hz) – not a simulation 

– Not intended to replace the CLA

• Intended to support structural design between CLA cycles 

MMAC Analysis
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Mission

• Joint project between JPL and an international 

partner

• Sine analysis are required for estimating the low 

frequency launch loads 

• Mission type: Earth orbiting Satellite 

• Mass: ~ 2000 kg 

• Launch Vehicle

– Space X Falcon 9

• This study uses Hurty/Craig-Bampton model of 

the spacecraft (CLA model)
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MMAC Analysis

• Inputs

– FEM of Payload:

• To get the constraint modes, inertia

relief modes , fixed-base normal

modes

– Payload to Launch Vehicle Interface

Accelerations:

• Dynamic and mean components

• Tuned to bound the CG load factors

– Modal Mass Acceleration Curve:

• CLA results from the current project

or previous projects with similar

configurations and launch vehicle

Inputs
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MMAC Analysis
Parameters
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Sine Analysis 

• SpaceX Falcon 9 Version 1.1

• 2% Damping

• Sine Environment

– Planner’s guide 

• Force limiting

– CG Load Factors (higher of the CLA and 

the value given in the planner’s guide)

– 2.5 g for the lateral case

Summary

Freq. (Hz) Accl. (g)

5 0.5

20 0.8

30 0.8

30 0.6

75 0.6

85 0.9

100 0.9

Freq. (Hz) Accl. (g)

5 0.5

85 0.5

100 0.6

Axial Lateral
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CLA Analysis

• Early Coupled Loads Analysis

– Falcon 9, Version 1.1

– 1% Damping

– Frequency Range: f <100 Hz

– Only acceleration results available

– Standard suite of Falcon 9 CLA events 

– Dynamic Uncertainty Factor: 1.5

– Static Uncertainty Factor: 1.0

Summary
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CLA Coverage
Sine vs MMAC

Sine vs CLA MMAC vs CLA

• Sine results are deficient by 68.7% in the lateral case, 7% in the axial case, 

and 25.4 in the overall maximum case

• MMAC provides full coverage for all three cases without excessive 

conservatism 
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CLA Coverage
Sine vs MMAC

Axial Lateral

• Deficiencies are observed across the entire range of acceleration values  
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Conclusions

• Sine analysis showed notable deficiency when compared against the CLA 

accelerations in this example
– Sine environment is not representative of the actual flight environment and may be the source of the 

deficiencies

• Sine waveform is not representative of the actual acceleration time histories at the SC to LV 

interface

• Sine is driven in only one DOF; actual flight environment drives all six DOFs simultaneously

• Sine primarily drives a single mode; actual flight environment drives multiple modes at once

• Sine capture only the dynamic component of interface acceleration; it does not capture the 

steady-state acceleration. 

– For design purposes the higher result from the two analyses (CLA and sine analysis) 

should be used

• MMAC provided a full coverage of the CLA results and does not have the 

shortcoming identified with the sine environment
– MMAC analyses is more representative of the flight environment than sine

• Future Work

– Comparison of loads data in addition to the accelerations

– Data comparison from other missions: SMAP, M2020, …
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MMAC Analysis
Equation
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MMAC Analysis
Summery

Max Lateral

Mean Dynamic

Tx 0.0 0.0

Ty 0.0 0.0

Tz 5.0 0.8

Rx 0.0 0.0

Ry 0.0 0.0

Rz 0.0 0.0

Max Axial

Go =  1.7

Sw =  5000 lbf

Fact         =  1.0

Fmax =  100 Hz

Damping =   1%

Go =  0.9

Sw =  9000 lbf

Fact        =  1.0

Fmax =  100 Hz

Damping =  1%

Mean Dynamic

Tx 0.0 1.5

Ty 0.0 1.5

Tz 2.0 0.25

Rx 0.0 0.0

Ry 0.0 0.0

Rz 0.0 0.0
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Interface Equivalent Sines from CLA  Analysis 
Compared with Sine Input Levels 

Axial Lateral

• Sine input levels cover the equivalent sines from CLA analysis
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CLA Coverage
Sine vs MMAC

Sine vs CLA

• Using 1% damping significantly 

improves the coverage but 

deficiencies are still observed in 

all three cases

– Max Lateral : 16.8%

– Max Axial :  1.6%

– Max :  2.7%


